Clarity. Governance. Scale. Outcomes.

Turn Generative AI Into a Business Advantage—Not an Experiment

CloudHew delivers GenAI consulting services that help enterprises move from hype-driven pilots to governed, scalable, and value-generating Generative AI. We bridge strategy, architecture, governance, and execution so your organization can adopt GenAI responsibly—with measurable ROI and enterprise trust.

What Is GenAI Consulting?

GenAI consulting helps enterprises define, design, govern, and scale Generative AI initiatives—aligning technology with business strategy, risk management, and measurable outcomes.

CloudHew’s approach answers the questions leaders ask:

  • How should we adopt Generative AI across the enterprise?
  • Which GenAI use cases will deliver real ROI?
  • What governance and controls are required?
  • How do we move from PoC to production—safely and fast?

Why Enterprises Struggle With GenAI Today

Senior leaders see GenAI’s potential—but face systemic blockers:
  • GenAI hype without strategic alignment to business goals
  • Disconnected PoCs across teams with no path to scale
  • Unclear ROI, cost control, and value realization
  • Data readiness, security, and IP exposure concerns
  • Hallucinations, explainability gaps, and trust issues
  • Vendor and model sprawl driving complexity and cost
  • Lack of governance, risk controls, and operating ownership

CloudHew’s enterprise GenAI advisory addresses these challenges end-to-end.

Business Outcomes You Can Expect

Clear, business-aligned GenAI strategy tied to enterprise priorities

Prioritized use cases with quantified ROI and feasibility scoring

Reduced GenAI risk and compliance exposure through governance-by-design

Faster PoC-to-production transition with execution-ready roadmaps

Optimized GenAI cost and vendor strategy to control spend

Trusted, explainable, and governed AI systems

Scalable operating modelsfor sustained GenAI value

GenAI Consulting Services

GenAI Strategy & Use-Case Discovery

• Business problem and value-chain mapping
• Use-case ideation across functions and domains
• Value vs. feasibility assessment
• Executive-aligned GenAI investment priorities

Enterprise GenAI Readiness & Maturity Assessment

• Data, platform, and security readiness
• Talent, skills, and operating model evaluation
• Risk, compliance, and regulatory posture assessment
• Maturity benchmarking and gap analysis

GenAI Architecture & Platform Advisory

• LLM, foundation model, and vendor selection guidance
• RAG vs. fine-tuning decision frameworks
• Enterprise integration and scalability design
• Cloud, data, and AI platform alignment

GenAI Enablement for Business Systems

• CRM, ERP, ITSM, HR, Finance, and Procurement integration
• Action-driven GenAI outputs (create tickets, update records, trigger workflows)
• Human-in-the-loop approvals and controls

Responsible AI, Governance & Risk Frameworks

• GenAI policy and usage frameworks
• Risk, bias, safety, and hallucination controls
• Auditability, traceability, and compliance alignment
• Legal, privacy, and IP risk mitigation

GenAI Operating Model & CoE Setup

• Centralized vs. federated GenAI models
• Roles, ownership, and decision rights
• CoE design, enablement, and change management
• Cross-functional adoption governance

GenAI Cost, ROI & Value Realization Advisory

• Business case and ROI modeling
• Cost forecasting, optimization, and FinOps alignment
• KPI definition and value tracking
• Vendor consolidation and spend control

Roadmap From PoC to Production at Scale

• Production-readiness criteria
• Security, monitoring, and lifecycle management
• Phased rollout plans with risk controls
• Continuous optimization and governance evolution

How RAG Reduces Hallucinations in GenAI

Retrieval-Augmented Generation (RAG) ensures GenAI responses are based on verified enterprise data, not generic internet knowledge.

With RAG integration:

  • LLMs retrieve relevant internal documents or data before generating responses
  • Outputs are contextually grounded and auditable
  • Hallucinations and incorrect assumptions are significantly reduced

This is critical for regulated, data-sensitive enterprise environments.

How CloudHew Is Different

Compared to strategy-only consulting firms

• We deliver execution-ready GenAI roadmaps, not theoretical decks

Compared to technology vendors

• We remain tool-agnostic, prioritizing governance and outcomes

Compared to experimental AI advisors

• We focus on enterprise-scale, production-grade GenAI adoption

CloudHew Differentiators


• Strategy, engineering, and governance under one roof
• Responsible AI and compliance-first frameworks
• Deep enterprise data and systems expertise
• Outcome-driven consulting focused on ROI—not hype

Advisory Use Cases

Defined an enterprise-wide GenAI roadmap across five business units

Reduced GenAI experimentation costs by 30% through platform consolidation

Established a GenAI Center of Excellence with governance and operating model

Enabled production-grade GenAI adoption within 90 days

Why Choose CloudHew

🤖

Deep Generative AI strategy and engineering expertise

🛡️

Enterprise-first, risk-aware advisory approach

🚀

Faster value realization than traditional consultancies

🔗

End-to-end GenAI lifecycle ownership

🌐

Proven frameworks for GenAI scale and governance

📊

Long-term partnership beyond strategy—through execution and optimization

Move Beyond GenAI Experiments

Design your enterprise GenAI strategy.
 Build responsible, scalable GenAI.
 Realize measurable business value.